Current Issue : April-June Volume : 2023 Issue Number : 2 Articles : 5 Articles
Mobile robots have been widely used in various sectors in the last decade. A mobile robot could autonomously navigate in any environment, both static and dynamic. As a result, researchers in the robotics field have offered a variety of techniques. This paper reviews the mobile robot navigation approaches and obstacle avoidance used so far in various environmental conditions to recognize the improvement of path planning strategists. Taking into consideration commonly used classical approaches such as Dijkstra algorithm (DA), artificial potential field (APF), probabilistic road map (PRM), cell decomposition (CD), and meta-heuristic techniques such as fuzzy logic (FL), neutral network (NN), particle swarm optimization (PSO), genetic algorithm (GA), cuckoo search algorithm (CSO), and artificial bee colony (ABC). Classical approaches have limitations of trapping in local minima, failure to handle uncertainty, and many more. On the other hand, it is observed that heuristic approaches can solve most real-world problems and perform well after some modification and hybridization with classical techniques. As a result, many methods have been established worldwide for the path planning strategy for mobile robots. The most often utilized approaches, on the other hand, are offered below for further study....
Wheeled mobile robots (WMRs) can navigate in uncontrolled environments with the assistance of electronic or physical devices. Several works have been conducted on the control and management of the path-tracking of a vehicle in different road scenarios. This paper aims to create an asynchronous finite state control law for a WMR. The control law is based on a proportional– integral–derivative controller, and the performance of the proposed model is evaluated in virtual and real environments in two different scenarios. In the first one, the WMR must perform a zig-zag maneuver between obstacles, while the second one involves a double left lane change. In the proposed scenarios, the WMR drives along a path until an obstacle is detected at less than 50 cm, causing the WMR to check whether the first lane is free to go and move on. These scenarios and the related required engineering approaches seem particularly suitable for system engineering in a student’s laboratory for the design and implementation of automated guidance system modeling....
In this article, the novel approach to equations of motion for serial manipulators developed in literature by Bertrand and Bruneau (2013) is extended to make it usable for manipulators with general joints (i.e., prismatic and/or rotational). In this method, the dynamic model is explicitly and directly obtained from the structural parameters of the manipulator and matrix algebra without intermediate heavy calculations such as energy derivation. The correctness and efficiency of the described method are demonstrated through simulation of the dynamical equations of a 5-DOF SCARA robot.Thesimulation results obtained using the new formulation were compared with those derived by Kane’s method, Lagrange–Euler formulation, and GIM (generalized inertia matrix)-Christoffel’s algorithm, which proves the efficiency and correctness of the presented model. It was concluded that the new formulation requires less CPU time to generate explicit closed-form inverse dynamics. Finally, to illustrate the power of the new formulation in real-time control, a trajectory tracking control for the SCARA manipulator based on the numeric and symbolic computation of the inverse dynamic is established, and it is shown that the numeric and symbolic approaches based on our method are equivalent. As a consequence, the applicability of the new formulation in real-time model-based control is proved....
In view of the shortcomings of low search efficiency and many path turning points of Probabilistic Roadmaps (PRM), a bidirectional search PRM global path planning algorithm is proposed. The algorithm improves the search connection rules by using the positive and negative directions to search the path alternately, so that the connection of unnecessary nodes reduces, thereby speeding up the efficiency of path planning. Besides, the algorithm incorporates cubic spline interpolation. That will increase the smoothness of path planning and ensure that the mobile robot can realize the path planning task more smoothly and safely. The simulation results show that the improved algorithm can effectively improve the convergence speed and path smoothness of the algorithm. Finally, the improved algorithm is applied to the actual mobile robot navigation experiment. The experimental results have proven that the path planning strategy was able to a superior advantage over traditional PRM in path quality and computational time....
At present, there is a problem of visual area switching in the existing SRL (supernumerary robotic limb) operation methods. In response to this problem, the authors’ previous work proposed a new SRL operation method called relatively independent operation, and proposed a corresponding software architecture. The purpose of this paper is to solve the theoretical problems and engineering realization problems of the human-SRL skeleton algorithm module in the software architecture. Therefore, modeling, data collection, data processing, and visualization of a human-SRL system are studied in this paper. Firstly, a human-SRL skeleton visualization simulation system is developed. The condition setting, the applications, and the core algorithm of the simulation system are introduced. The core algorithm mainly contains four types of important functions, namely skeleton model building functions, human-SRL data collection functions, human-SRL data processing functions, and skeleton visualization functions. Secondly, the implementation principles of these four functions are described: (1) For the skeleton model building functions, a human-SRL skeleton model is proposed which is an integration of a human skeleton model and an SRL skeleton model. The construction methods of these three skeleton models are described. (2) For the remaining functions, how to collect and process human data, SRL data, human-SRL data, and how to visualize a human-SRL skeleton are described. Finally, the visualization effect of the developed simulation system on human-SRL skeleton movement is verified by experiments, which proves the correctness of the functions in the simulation system....
Loading....